MRF in Action Lesson Plan

Objectives:	North Carolina Common Core and Essential Standards:
1) Students will understand	4.P.1.1 Explain how magnets interact with all things made of iron
basics of solid waste	and with other magnets to produce motion without touching them.
management and remember	4.P.1.2 Explain how electrically charged objects push or pull on
the 3 R's – in order.	other electrically charged objects and produce motion.
2) Students will understand	4.P.2.1 Compare the physical properties of samples of matter
physical properties of	(strength, hardness, flexibility, ability to conduct heat, ability to
recyclables.	conduct electricity, ability to be attracted by magnets, reactions to
3) Students will understand the	water and fire).
basics of the recycling	4.L.1.3 Explain how humans can adapt their behavior to live in
sorting process.	changing habitats (e.g., recycling wastes, establishing rain gardens,
	planting trees and shrubs to
Background Information	prevent flooding and erosion).
- Solid Waste Management basics	4.G.1.2 Explain the impact that human activity has on the
- 3R's – Reduce, Reuse, Recycle	availability of natural resources in North Carolina.
- Physical Properties of matter	4.G.1.3 Exemplify the interactions of various peoples, places and
	cultures in terms of adaptation and modification of the
Materials Needed	environment.
- Mini-MRF kit	4.G.1.4 Explain the impact of technology (communication,
- Table in the classroom to set up	transportation and inventions) on North Carolina's citizens, past
mini-MRF	and present.
<u>Lesson Time</u>	MRF Lesson Partnership
- 45 minutes	This lesson was developed by the MRF Lesson Partnership, a joint
- Pre-Activity (20 min or as	collaboration of the City of Wilmington, New Hanover County, Keep
homework)	New Hanover County Beautiful, UNCW's Watson College of
- Post-Activity (20-30 min or as	Education, and the Center for Education in Science, Technology,
homework)	Engineering and Math (CESTEM).

Subject	Procedure	Materials	Standards
Review from Waste Audit Lesson (15min)	Q: What happens to the trash once it's in the trash can? Goes to the landfill. NHC landfill is over 70' tall(permitted to 200'); 689 acres; <i>Show poster of landfill.</i>	Photo of landfill/schoo l bus	
Three Rs	 Q: What are the 3 Rs? 1) reduce = don't use something or use less , 2) reuse = use something again (like a bag, water bottle, etc.) 3) recycle = break it down or melt it, and make it into a new product. 	*Photo- Reduce, reuse, recycle.	4.G.1.3; 4.L.1.3
Intro to Recycling	Show "Life of a Plastic Bottle" seriesEpisode 1: http://youtu.be/SUGw6V_Jp4s Episode 2: http://youtu.be/fNFar081lQM Episode 3: http://youtu.be/dWK6RrYcIUA Q: Do you recycle at school? Home? Why do you recycle?		

© MRF Lesson Partnership

AUTH

Contact: City of Wilmington, Public Service Department, Solid Waste Division

	e.g. Making new cans out of old cans uses a lot less energy and water than using new aluminum – and creates a lot less air and water pollution. Q : What can we recycle? A: plastic, paper, cardboard, aluminum, steel, glass Q : What happens to the recycling after it leaves your house/school? Options – City of Wilmington blue carts, New Hanover County's drop-off sites, Waste Management, Waste Industries, Pink Trash, etc. A: All of the recycling, regardless of hauler, goes to a MRF. <i>Show MRF poster</i> . M aterial R ecovery Facility – the sorting center we saw in the first episode of "Life of a Plastic Pottle"	*Show recyclables	
Create a Mini-MRF (20 min)	of a Plastic Bottle" Let's make a MRF in the classroom! The MRF uses the different characteristics – or physical properties - of recyclables to sort them. What do you notice about these different materials? Differences in weight, feel, shape, hardness, etc.? Students break up into groups to create their own MRF. Encourage students identify the items and make observations about the weight, material type, and other physical properties. For example, weight (light or heavy), melting temperatures (high or low), magnetism (magnetic or not). Each group takes 2-3 minutes to present and explain to the class how (what tools) they would use to sort out each material type.	visual aid *Show physical properties visual aid Mini MRF kits (one per group)	4.P.2.1
Demonstrate MRF. Station 1: Drop off Materials	"Drive" the truck into the tipping floor of the MRF (a carpeted area in the room) and empty the contents. Instructor can zoom around a few desks to pretend to pick up recyclables if they need a little more to do.	Recycling truck, small recycling carts	
Station 2: Manual Sort	MRFs use technology to sort recyclable materials. But people still sort some items out Cardboard is big, bulky and easy to pick out. Plastic bags get stuck in the machines at the MRF, so that's why we recycle them at the grocery store.	Cardboard, plastic bags, paper, metals. *Show manual sort prompt	4.G.1.4
Station 3: Paper	Use the fan to move the paper. Why does the paper fly off? It's lightweight. The paper will be baled and trucked to a facility to make things like new paper or paperboard boxes (tell them to look at their cereal box tomorrow morning; they all say "made with 100% recycled content")	Fan paper	4.P.2.1
Station 4: Plastic Density	How do you think plastics are sorted? Plastic comes in all different shapes, sizes, and colors. Look around the room and have students point out a few		4.P.2.1

© MRF Lesson Partnership

Contact: City of Wilmington, Public Service Department, Solid Waste Division

	examples that are easily visible. Where do plastics come from? What are they made of? Plastic is made with different types of resins (thick liquids that harden into a solid). There are natural resins that come from plants (e.g. amber, frankincense and myrrh) and are used in varnish, glue, and to make rosin that you put on your violin bow. Resins can also be synthetic, or man-made. Plastic is typically made of synthetic resin. Plastics have different physical properties – some float, some sink, for instance. MRFs use a few different types of technology to sort plastics. Some use an optical sensor, which is kind of like a laser beam that can tell how thick something is. Other MRFs use a water tank to sort out which plastic floats and which sinks.	Jar of plastics in water	
Station 5/6: Magnets	How can we sort out metals? MRFs use a magnet to sort out materials that have metals such as iron, nickel or cobalt in them. Show the steel can, sometimes called a tin can. Steel is a mix, or an alloy, made of iron and a little bit of carbon. These cans are often lined with tin, so people sometimes call them tin cans. Confused? Remember this – steel cans are attracted to magnets. Aluminum cans (hold one up) aren't.	Magnets Steel cans Aluminum cans	4.P.1.1
	To separate aluminum cans, use positive and negative poles of magnets to repel and shoot the cans onto the conveyor belt. An eddy current, magnets spin around and create an energy field around the aluminum. Use the magnetic repulsion cars to demonstrate. Have 1 student come up to use the "eddy current" to sort out aluminum cans.	Aluminum cans Magnets with cars	4.P.1.2
Station 7: Glass	Have 1 student hold the bag of glass beads and the empty yogurt container. Which one is heavier? In a MRF, the heavy glass is directed to a glass collection site. The glass will be trucked to a factory to make new glass, countertops, or sometimes it's crushed and used to make roads.	Glass beads Yogurt container	4.P.2.1
Station 8: Bales	Show the students the baled recyclables. Just like we saw in the videos, every material (except glass) is baled up, like hay. After the materials are baled up, they are shipped to factories around the state, country or around the world to be made into something new. We recycle so we can take materials and make them into something new, instead of letting it take up	Mini bales Carpet,	

© MRF Lesson Partnership

Contact: City of Wilmington, Public Service Department, Solid Waste Division

	space in the landfill.	notebooks, pencils, golf tees	
Review/Wrap Up	What are the 3Rs? How can we sort out recyclables?		

Post Activity Ideas

Have students describe a recycling center and materials recovery facility (MRF), and identify five sorting techniques used to separate recyclable materials for further processing. This can be done with the "Sort It Out" worksheet or with a class discussion.

Extension for classes that conducted waste audit in school

Now that you have done a waste audit at school, test it out at home. What can you do to reduce waste at home and make it easier to recycle?

Resources

- How a MRF works, animated video from re3.org <u>http://youtu.be/7CFE5tD1CCI</u>
- U.S. Environmental Protection Agency Office of Solid Waste http://www.epa.gov/osw
- NC School of Science and Math, Magnetic Effects http://www.ncssm.edu/learn/magnetic-effects-0
- Earth 911 environmental glossary and search by zip code for local recycling opportunities www.earth911.org
- American Forest & Paper Association interactive recycling game <u>www.afandpa.org/recycling</u>
- Steel Recycling Institute <u>www.recycle-steel.org</u>
- Glass Packaging Institute <u>www.gpi.org</u>
- Can Central <u>http://www.cancentral.com</u>
- Plastic recycling <u>www.PlasticsResource.com</u> and <u>www.napcor.com</u>
- Eddy current in action http://www.cogelme.com/eng/e-videos.htm
- Relationship between aluminum and magnets <u>http://terpconnect.umd.edu/~wbreslyn/magnets/is-aluminium-magnetic.html</u>

© MRF Lesson Partnership Contact: City of Wilmington, Public Service Department, Solid Waste Division

